

U.S. Army Corps of Engineers

Lake Okeechobee Regulation Schedule Study July 2006

Agenda

- Background
- Public Meeting Summary
- Study
 - Objectives
 - Assumptions and Constraints
 - Alternatives
 - Performance Measures
- Tentatively Selected Plan
- Summary
- Questions

Background

Summary of Public Comments

- Supported plan to provide healthier lake
- Against plan due to high estuary releases
- Release water south
- Water quality throughout the state
- Increase storm water treatment areas and storage reservoirs

- Did not meet study goal and objectives
- Release constant flows / reduce high discharges
- Economic costs of high releases
- Pits lake community against coastal areas
- Account for wet weather cycle

Study Goals & Objectives

Implement a new Lake Regulation Schedule supported by a Supplemental Environmental Impact Statement by January 2007

Objectives of the new regulation schedule

- Ensure public health and safety
- Manage Lake Okeechobee at lower lake levels
- Reduce high regulatory releases to the estuaries
- Continue to meet Congressionally authorized project purposes

Study Assumptions

- Existing condition (2007)
- Operational guidelines consider period of record (1913 current)
- Temporary forward pumps will be available by SFWMD
- SFWMD provided a surrogate for Supply Side Management line (lowered one foot)
- New schedule's anticipated period of use is 2007 2010
- Corps will initiate new Lake Okeechobee Regulation Study & EIS in 2007 to capture Acceler8 and other CERP Band 1 projects, and permanent forward pumps, scheduled for implementation in 2010

Study Constraints

- Period of record is 36 years (1965 2000)
- Herbert Hoover Dike integrity (Lake not to exceed 17.25)
- Existing systems' conveyance capacity
- Stormwater Treatment Areas water quality treatment capacity (64,000 acre-feet annual average)
- Existing regulation schedules for water conservation areas and Kissimmee River chain of lakes

Alternatives Evaluated

Initial Array of Alternatives

Final Array

The fact that the same of the last the last

Tentatively Selected Plan 1bS2-m

- Allows for quicker response to inflows
- Reduces high lake conditions
- Improves optimum flow to the estuaries

TSP 1bS2-m flexibility

High Lake Management Band: Up to maximum capacity to tide and WCA

Operational Band:

- High Stage (15.35 17.25): Up to maximum pulse releases to steady flow up to 6,500 at S-77 (*Moore Haven*); 2,800 cfs at S-80 (*St. Lucie*); and, WCA from 0 to max
- Intermediate Stage (14.90 16.60): From environmental base flow of 450 cfs to the Caloosahatchee Estuary up to 6,500 at S-77; releases from 0 up to 2,800 cfs at S-80; and, WCA from 0 to max
- Low Stage/ Base Flow (9.50 16.15): From no releases to environmental base flow of 450 cfs to the Caloosahatchee Estuary up to 4,500 at S-77; releases from 0 up to 1,800 cfs at S-80; and, WCA from 0 to max

Supply Side Management Band: SFWMD water supply releases

TSP 1bS2-m Regulation Schedule

Actual 2003-2005 —

1bS2-M —

--- Actual 2003-2005 to St Lucie from the lake

— Actual 2003-2005 to Caloosahatchee from the lake

Performance of Alternatives

- Evaluated using SFWM 2 x 2 Model
 - Uses 36-year period of record (1965 2000)
- Evaluated against CERP-based performance measures
 - Flood Control / Public Safety
 - Caloosahatchee Estuary
 - > St. Lucie Estuary
 - > Lake Okeechobee
 - Water supply
 - Navigation
 - Greater Everglades

Flood Control – Public Safety

16.00 to 17.25 lake elevations

High trends in duration of days

1bS2 No-Action 2a 1bS2-m LORS-FWO 2a-m 4 3

Best Worst

the state of the last of the

LORSS Summary of Lake Okeechobee High Stages (>16.00), 36-year simulated period-of-record

Caloosahatchee Estuary

5 performance measures

- Four flow rate ranges (<450 cfs, 450 to 2800 cfs, 2800 to 4500 cfs, and >4500 cfs)
- Mean Moving Weekly Flows >4500 cfs

LORS-FWO 1bS2

2a-m

2a

1bS2-m

No-Action

Best

Caloosahatchee Estuary

St. Lucie Estuary

5 performance measures

the state of the Probable of

- Four flow rate ranges (<350 cfs, 350 to 2000 cfs,
 2000 to 3000 cfs, and >3000 cfs)
- Mean moving 2-week flows >3000 cfs

```
2a-m
1bS2-m
1bS2 LORS-FWO No-Action
4 3 2-a
```

Best Worst

St. Lucie Estuary

Lake Okeechobee

(Environmental Impacts)

6 performance measures

Above stage envelope

the state of the little state

2a 2a-m

1bS2-m 1bS2 LORS-FWO No-Action 3

Best

Lake Okeechobee

(Environmental Impacts)

6 performance measures

Below stage envelope

LORS-FWO No-Action

the state of the last water

1bS2-m 1bS2 2a 2a-m 4

Best

Water Supply

(EAA / LOSA)

9 performance measures

 Focus on three additional primary measures recommended by SFWMD

No-Action

1bS2

LORS-FWO

the state of the Problem of

1bS2-m

3

4

2a

2a-m

Best

Mean Annual EAA and LOSA Supplemental Irrigation: Demands and Demand Not Met from 1965-2000 for Drought Years: 1971 1975 1981 1985 1989

Navigation

All alternatives increased the number of days that the lake fell below 12.56

Best Worst

Greater Everglades

5 performance measures

 Peat dry-out, reversals, tree island, recessions, snail kite

1bS2

3

LORS-FWO

1bS2-m

4

2a

2a-m

Best

Greater Everglades Performance Measures

Final Analysis

- Alternatives
 - LORS-FWO, 3
 - 2-a, 2a-m, 4
 - 1bS2
- 1bS2-m
 - Best balance to meet objectives

Milestone Schedule

- **DWCP Draft Water Control Plan**
- **DSEIS Draft Supplemental Environmental Impact Statement**
- WCP Water Control Plan
- **SEIS** Supplemental Environmental Impact Statement
- **CAR** Coordination Act Report Fish and Wildlife Service

Public Coordination

- 45-day public comment period for draft
 SEIS and WCP begins in August
- Regional public meetings in September

Public Comments

Jacksonville District website www.saj.usace.army.mil

Project Manager Pete Milam j.p.milam@saj.usace.army.mil

U.S. Army Corps of Engineers Jacksonville District 701 San Marco Blvd. Jacksonville, FL 32207-8175

Questions?

